skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kotecha, Maulik_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polycrystalline materials consist of grains (crystals) oriented at different angles resulting in a heterogeneous and anisotropic mechanical behavior at that micro-length scale. In this study, a novel method is proposed for the first time to determine the [Formula: see text] crystal orientations of grains in a [Formula: see text] domain, using solely [Formula: see text] deformation fields. The grain boundaries are assumed to be unknown and delineated from the reconstructed changes in the crystallographic orientation. Further, the constitutive equations that describe the mechanical behavior of the domain in [Formula: see text] under plane stress conditions are derived, assuming that the material is transversely isotropic in 3D. Finite element based algorithms are utilized to discretize the inverse problem. The in-house written inverse problem solver is coupled with Matlab-based optimization scripts to solve for the mechanical property distributions. The performance of this method is tested at different noise levels with synthetic displacements that were used as measured data. The reconstructions deteriorate as the noise level is increased. This work presents a first milestone in the verification of this novel technology with synthetic data. 
    more » « less